Движение диска в физике

Момент инерции диска. Явление инерции

Многие люди замечали: когда они едут в автобусе, и он увеличивает свою скорость, их тела прижимаются к креслу. И наоборот, при остановке транспортного средства пассажиров будто выбрасывает из посадочных мест. Все это происходит из-за инерции. Рассмотрим это явление, а также объясним, что такое момент инерции диска.

Что представляет собой инерция?

Под инерцией в физике понимают способность всех тел, обладающий массой, сохранять покоящееся состояние либо двигаться с одинаковой скоростью в одном и том же направлении. Если необходимо изменить механическое состояние тела, то приходится прикладывать некоторую внешнюю силу к нему.

Вам будет интересно: Особенности и отличия австралийского английского языка от британского

В данном определении следует обратить внимание на два момента:

  • Во-первых, это вопрос состояния покоя. В общем случае такого состояния не существует в природе. Все в ней находится в постоянном движении. Тем не менее, когда мы едем в автобусе, то нам кажется, что водитель не двигается со своего места. В таком случае идет речь об относительности движения, то есть относительно пассажиров водитель находится в покое. Отличие между состояниями покоя и равномерного движения заключается лишь в системе отсчета. В примере выше пассажир в состоянии покоя относительно автобуса, в котором едет, но движется относительно остановки, которую проезжает.
  • Во-вторых, инерция тела пропорциональна его массе. Наблюдаемые нами объекты в жизни все имеют ту или иную массу, поэтому все они характеризуются некоторой инертностью.

Таким образом, инерция характеризует степень трудности изменения состояния движения (покоя) тела.

Инерция. Галилей и Ньютон

Когда изучают вопрос инерции в физике, то как правило, связывают ее с первым ньютоновским законом. Этот закон гласит:

Любое тело, на которое не действуют внешние силы, сохраняет свое состояние покоя либо равномерного и прямолинейного движения.

Считается, что этот закон сформулировал Исаак Ньютон, и произошло это в середине XVII века. Отмеченный закон справедлив всегда и во всех процессах, описываемых классической механикой. Но когда ему приписывают фамилию английского ученого, следует сделать некоторую оговорку.

В 1632 году, то есть за несколько десятков лет до постулирования закона инерции Ньютоном, итальянский ученый Галилео Галилей в одной из своих работ, в которой он сравнивал системы мира Птолемея и Коперника, по сути сформулировал 1-й закон «Ньютона»!

Галилей говорит, что если тело движется по гладкой горизонтальной поверхности, и силами трения и сопротивления воздуха можно пренебречь, то это движение будет сохраняться вечно.

Вращательное движение

Приведенные выше примеры рассматривают явление инерции с точки зрения прямолинейного перемещения тела в пространстве. Однако существует еще один тип движения, который распространен в природе и Вселенной — это вращение вокруг точки или оси.

Масса тела характеризует его инерционные свойства поступательного движения. Для описания же аналогичного свойства, которое проявляет себя при вращении, вводят понятие момента инерции. Но перед тем как рассматривать эту характеристику, следует познакомиться с самим вращением.

Круговое перемещение тела вокруг оси или точки описывается двумя важными формулами. Ниже они приводятся:

В первой формуле L — это момент импульса, I — момент инерции, ω — угловая скорость. Во втором выражении α — это ускорение угловое, которое равно производной по времени от угловой скорости ω, M — момент силы системы. Он рассчитывается как произведение результирующей внешней силы на плечо, к которому она приложена.

Первая формула описывает вращательное движение, вторая — его изменение во времени. Как видно, в обеих этих формулах присутствует момент инерции I.

Момент инерции

Сначала приведем его математическую формулировку, а затем объясним физический смысл.

Итак, момент инерции I рассчитывается следующим образом:

Если перевести это выражение с математического на русский язык, то оно означает следующее: все тело, которое имеет некоторую ось вращения O, разбивается на мелкие «объемчики» массой mi, находящиеся на расстоянии ri от оси O. Момент инерции рассчитывается путем возведения в квадрат этого расстояния, его умножения на соответствующую массу mi и сложения всех полученных слагаемых.

Если разбить все тело на бесконечно малые «объемчики», тогда сумма выше будет стремиться к следующему интегралу по объему тела:

I = ∫V(ρ *r2dV), где ρ — плотность вещества тела.

Из приведенного математического определения следует, что момент инерции I зависит от трех важных параметров:

  • от значения массы тела;
  • от распределения массы в теле;
  • от положения оси вращения.
Читайте также:  Как работает hdd диск кратко

Физический смысл момента инерции заключается в том, что он характеризует, насколько «тяжело» привести в движение вращения данную систему или изменить ее скорость вращения.

Момент инерции диска однородного

Полученные в предыдущем пункте знания применимы для расчета момента инерции однородного цилиндра, который в случае h Понравилась статья? Поделись с друзьями:

Источник

Движение диска в физике

А ну-ка, крутаните монетку ребром на столе! Уже крутится? А перед самыьм падением она внезапно увеличит скорость вращения и резко затормозит, издавая дребезжащий звук, но не давая ни насладиться им, ни рассмотреть повнимательней процесс падения.
Упала … жаль, что не очень долго крутилась …((
Забавно? И не только вам!

Когда-то, в конце 19 столетия математиками были выведены уравнения движения для катящегося диска, затем другие уже, но столь же неутомимые математики, исследовали проблему устойчивости дисков при вращении. Движение вращающегося диска хорошо описывается уравнениями волчка в гравитационном поле.

В наше время в магазинах любому любителю «покрутить» предложат фирменную игрушку «диск Эйлера». Великолепный металлический диск с голографическими наклейками по ободу будет крутиться перед вашими глазами на зеркальной подставке, завораживая игрой цвета и звука.

Кто же был автором этой игрушки? Неужели сам Леонард Эйлер, знаменитый математик 18 века? Ведь какая-то часть его работ тоже была посвящена вращению …

В качестве игрушки вращающийся диск был впервые предъявлен зрителям Джозефом Бендиком в 90-х годах 20-го века. Проведя наблюдения за вращающейся монетой, он сумел добиться, чтобы диск вращался до 3 минут и даже более. Изобретение Дж. Бендика представляло собой плоский диск в виде хоккейной шайбы из хромированной стали с полированными скругленными краями диаметром в 3 дюйма и толщиной в ½ дюйма. Диск вращался на слегка вогнутом круглом зеркале диаметром 9 дюймов.

Конечно, вы уже сбегали в магазин сувениров и «диск Эйлера» у вас в руках! Запускаем, и пока он крутится, в уме начинают созревать идеи по поводу того, как объяснить его движение. Неистребимая тяга к знанию заставляет вас рыться в книгах, вспоминать, разбираться в теории вращательного движения.

Итак, диск Эйлера – это твердое цилиндрическое тело, имеющее единственную точку контакта с горизонтальной поверхностью, по которой он одновременно и катится, и вращается.

Интересно, что движение диска имеет две особенности: резкое увеличение частоты слышимого звука в конце вращения и внезапную остановку диска. Причем вращающийся диск никогда не теряет контакта с поверхностью.
Время вращения диска почти не зависит от того, под каким углом был закручен диск, и какова была его скорость вращения при пуске.

Вращение дисков проверяли даже в вакууме! Запускали сплошные диски, просто кольца и кольца с покрытием из тефлона. Оказывается, что отсутствие воздуха не очень сильно влияло на поведение вращающегося диска, хотя тефлоновое покрытие значительно увеличивало время вращения.
Чем быстрее вращается диск, тем он более устойчив при качении. Это явление, в котором скорость пропорциональна стабильности, характерно для спутников, вращающихся вокруг земли.
При вращении запущенный диск обладает одновременно и потенциальной и кинетической энергией. Потенциальной — за счет вертикального положения и кинетической — за счет вращения. В любой момент вращения баланс двух сил: силы тяжести и реакции опоры не дают диску упасть. И, если бы не трение и вибрации, диск вращался бы в течение очень долгого времени.

Но, как и при любом другом движении, на скорость вращения влияет затормаживающая сила трения о воздух, а также трение между диском и поверхностью. Кинетическая энергия вращения диска, потерянная в результате имеющегося трения, компенсируется за счет уменьшающейся потенциальной энергии диска. В результате центр массы диска опускается, все более приближаясь к поверхности, на которой происходит его вращение. Это увеличивает плечо момента силы между точкой контакта с поверхностью и центром массы, что приводит к росту вращающего момента. Увеличение вращающего момента постепенно меняет направление оси вращения, которая занимает все более вертикальное положение.

Диск начинает оседать, прокручиваясь на ребре. Угол наклона между диском и поверхностью становится все меньше. Скорость вращения диска возрастает. Резкому увеличению частоты вращения диска способствует тонкая прослойка воздуха между диском и поверхностью, на которой он вращается. Внутреннее трение воздуха способствует торможению монеты. При очень малом угле наклона вибрации диска и поверхности приводят к потере контакта между ними, и движение диска резко прекращается.
Хотя частота вращения увеличивается по мере падения диска, это, однако, не является главным источником нарастающего звука при падении диска. Звук образуется за счет вибрирования самого диска и поверхности, по которой он движется. Вибрации диска и поверхности приводят, в конце концов, к потере контакта между ними, а соударение диска и поверхности прекращает движение.

Читайте также:  Момент инерции для диска и обруча

На первый взгляд все простенько, но что вы скажете о таких понятиях, как сингулярность, диссипация, бифуркации? А при объяснении физики движения «диска Эйлера» без них не обойтись!
Теория, описывающая движение диска, оказалась очень сложной, и учеными, занимавшимися проблемами вращения диска Эйлера, написаны серьезные научные работы, дающие математический анализ движения этой забавной игрушки.

Вот так! Наконец, вкусив тайны физики движения диска и научившись произносить «страшные слова» (сингулярность, диссипация и бифуркации), мы последний раз ставим на ребро диск Эйлера, раскручиваем его и успокоенные увиденным ( а всё оказалось именно так, как пишут именитые ученые) кладем на полку.
Неизвестное стало известным, но может быть не всё?

Любознательный человек будет поражен тем, сколько интересных задач можно решить с помощью этой маленькой игрушки.

Кто не знает, что такое турбулентность? Можно не знать этого термина, но большинство из вас испытывало внезапную тряску самолета в воздухе. Конструкторы самолетов стремятся предотвратить образования завихрений воздуха вокруг самолета при полете, т.к. на больших скоростях они отрицательно сказываются на целостности конструкции. Воздействие же гигантских атмосферных вихрей на самолет тоже может закончиться плачевно. А причем здесь диск Эйлера? Оказывается, процессы вихреобразования можно объяснить, используя теорию вращения, разработанную для дисков.

В результате исследовательских работ проведены даже аналогии между изменением звука при вращении диска и звуками «визжащих» тормозов автомобилей. Часть энергии диска на заключительном этапе вращения переходит в энергию звуковых колебаний, и то же самое происходит в тормозах при экстренном торможении автомобиля.
Вот оказывается, как много можно увидеть во вращении обыкновенной монеты, а уж тем более, если у тебя в руках такая научная игрушка, как «диск Эйлера»!

Кстати, а что похожего можно заметить в поведении скачущего по твердой поверхности шарика от пинг-понга? Но, как принято говорить в последнее время, это уже совсем другая история …

Источник

Движение диска в физике

Главная

Вспомни физику:
7 класс
8 класс
9 класс
10-11 класс
видеоролики по физике
мультимедиа 7 кл.
мультимедиа 8 кл.
мультимедиа 9 кл.
мультимедиа 10-11 кл.
астрономия
тесты 7 кл.
тесты 8 кл.
тесты 9 кл.
демонстрац.таблицы
ЕГЭ
физсправочник

Азбука физики

Научные игрушки

Простые опыты

Этюды об ученых

Читатели пишут

Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Загляни!
На урок

УДИВИТЕЛЬНЫЙ ДИСК ЭЙЛЕРА

А ну-ка, крутаните монетку ребром на столе! Уже крутится? А перед самыьм падением она внезапно увеличит скорость вращения и резко затормозит, издавая дребезжащий звук, но не давая ни насладиться им, ни рассмотреть повнимательней процесс падения.
Упала … жаль, что не очень долго крутилась …( (
Забавно? И не только вам!

Когда-то, в конце 19 столетия математиками были выведены уравнения движения для катящегося диска, затем другие уже, но столь же неутомимые математики, исследовали проблему устойчивости дисков при вращении. Движение вращающегося диска хорошо описывается уравнениями волчка в гравитационном поле.В наше время в магазинах любому любителю «покрутить» предложат фирменную игрушку «диск Эйлера». Великолепный металлический диск с голографическими наклейками по ободу будет крутиться перед вашими глазами на зеркальной подставке, завораживая игрой цвета и звука.

Кто же был автором этой игрушки? Неужели сам Леонард Эйлер, знаменитый математик 18 века? Ведь какая-то часть его работ тоже была посвящена вращению …

В качестве игрушки вращающийся диск был впервые предъявлен зрителям Джозефом Бендиком в 90-х годах 20-го века. Проведя наблюдения за вращающейся монетой, он сумел добиться, чтобы диск вращался до 3 минут и даже более. Изобретение Дж. Бендика представляло собой плоский диск в виде хоккейной шайбы из хромированной стали с полированными скругленными краями диаметром в 3 дюйма и толщиной в ½ дюйма. Диск вращался на слегка вогнутом круглом зеркале диаметром 9 дюймов.

Конечно, вы уже сбегали в магазин сувениров и «диск Эйлера» у вас в руках! Запускаем, и пока он крутится, в уме начинают созревать идеи по поводу того, как объяснить его движение. Неистребимая тяга к знанию заставляет вас рыться в книгах, вспоминать, разбираться в теории вращательного движения.
Итак, диск Эйлера – это твердое цилиндрическое тело, имеющее единственную точку контакта с горизонтальной поверхностью, по которой он одновременно и катится, и вращается.
Интересно, что движение диска имеет две особенности: резкое увеличение частоты слышимого звука в конце вращения и внезапную остановку диска. Причем вращающийся диск никогда не теряет контакта с поверхностью.
Время вращения диска почти не зависит от того, под каким углом был закручен диск, и какова была его скорость вращения при пуске.

Вращение дисков проверяли даже в вакууме! Запускали сплошные диски, просто кольца и кольца с покрытием из тефлона. Оказывается, что отсутствие воздуха не очень сильно влияло на поведение вращающегося диска, хотя тефлоновое покрытие значительно увеличивало время вращения.
Чем быстрее вращается диск, тем он более устойчив при качении. Это явление, в котором скорость пропорциональна стабильности, характерно для спутников, вращающихся вокруг земли.
При вращении запущенный диск обладает одновременно и потенциальной и кинетической энергией. Потенциальной — за счет вертикального положения и кинетической — за счет вращения. В любой момент вращения баланс двух сил: силы тяжести и реакции опоры не дают диску упасть. И, если бы не трение и вибрации, диск вращался бы в течение очень долгого времени.

Но, как и при любом другом движении, на скорость вращения влияет затормаживающая сила трения о воздух, а также трение между диском и поверхностью. Кинетическая энергия вращения диска, потерянная в результате имеющегося трения, компенсируется за счет уменьшающейся потенциальной энергии диска. В результате центр массы диска опускается, все более приближаясь к поверхности, на которой происходит его вращение. Это увеличивает плечо момента силы между точкой контакта с поверхностью и центром массы, что приводит к росту вращающего момента. Увеличение вращающего момента постепенно меняет направление оси вращения, которая занимает все более вертикальное положение.

Диск начинает оседать, прокручиваясь на ребре. Угол наклона между диском и поверхностью становится все меньше. Скорость вращения диска возрастает. Резкому увеличению частоты вращения диска способствует тонкая прослойка воздуха между диском и поверхностью, на которой он вращается. Внутреннее трение воздуха способствует торможению монеты. При очень малом угле наклона вибрации диска и поверхности приводят к потере контакта между ними, и движение диска резко прекращается.
Хотя частота вращения увеличивается по мере падения диска, это, однако, не является главным источником нарастающего звука при падении диска. Звук образуется за счет вибрирования самого диска и поверхности, по которой он движется. Вибрации диска и поверхности приводят, в конце концов, к потере контакта между ними, а соударение диска и поверхности прекращает движение.

На первый взгляд все простенько, но что вы скажете о таких понятиях, как сингулярность, диссипация, бифуркации? А при объяснении физики движения «диска Эйлера» без них не обойтись!
Теория, описывающая движение диска, оказалась очень сложной, и учеными, занимавшимися проблемами вращения диска Эйлера, написаны серьезные научные работы, дающие математический анализ движения этой забавной игрушки.

Вот так! Наконец, вкусив тайны физики движения диска и научившись произносить «страшные слова» (сингулярность, диссипация и бифуркации), мы последний раз ставим на ребро диск Эйлера, раскручиваем его и успокоенные увиденным ( а всё оказалось именно так, как пишут именитые ученые) кладем на полку.
Неизвестное стало известным, но может быть не всё?

Любознательный человек будет поражен тем, сколько интересных задач можно решить с помощью этой маленькой игрушки.

Кто не знает, что такое турбулентность? Можно не знать этого термина, но большинство из вас испытывало внезапную тряску самолета в воздухе. Конструкторы самолетов стремятся предотвратить образования завихрений воздуха вокруг самолета при полете, т.к. на больших скоростях они отрицательно сказываются на целостности конструкции. Воздействие же гигантских атмосферных вихрей на самолет тоже может закончиться плачевно. А причем здесь диск Эйлера? Оказывается, процессы вихреобразования можно объяснить, используя теорию вращения, разработанную для дисков.

В результате исследовательских работ проведены даже аналогии между изменением звука при вращении диска и звуками «визжащих» тормозов автомобилей. Часть энергии диска на заключительном этапе вращения переходит в энергию звуковых колебаний, и то же самое происходит в тормозах при экстренном торможении автомобиля.
Вот оказывается, как много можно увидеть во вращении обыкновенной монеты, а уж тем более, если у тебя в руках такая научная игрушка, как «диск Эйлера»!

Кстати, а что похожего можно заметить в поведении скачущего по твердой поверхности шарика от пинг-понга? Но, как принято говорить в последнее время, это уже совсем другая история …

P.S. для преподавателей:
Теперь можно смело сказать, что вращающуюся монету, а уж тем более такую великолепную игрушку, как «диск Эйлера», надо обязательно рассматривать в качестве учебного пособия на занятиях по механике! Ведь, как известно, игрушки делают процесс познания более интересным даже для старших школьников и студентов!
Не верите?
А вы покрутите монету на уроке …

Читайте также:  Жесткий диск мастер и slave


Книги по физике
Викторина по физике

Физика в кадре

Учителю

Решение задач

Презентации

Источник

Поделиться с друзьями
Шинбург
Adblock
detector