Сварка резины в стык

СВАРКА МЕДНЫХ ШИН

Для медных шин, так же как и для алюминиевых, имеется достаточно большой выбор способов сварки, практически обеспечивающий все потребности электро­монтажного производства. Сюда относятся: сварка угольным электродом, аргонодуговая сварка вольфрамовым электродом и полуавтоматическая, полуавтоматическая и автоматическая сварка под слоем флюса, плазменная и газовая сварка.

Сварка меди более сложна, чем сварка алюминия, что обус­ловлено особенностями меди как материала. Одно из главных ослож­нений, связанных со сваркой меди, —необходимость предвари­тельного или сопутствующего подогрева шин при толщине ме­талла уже более 10—12 мм. Это обусловлено большой тепло­проводностью меди. Кроме того, вследствие жидкотекучести меди выполнение вертикальных и горизонтальных швов затруднено, а потолочных — практически невозможно.

Правда, следует оговориться, что некоторые сварщики весьма высокой квалификации добиваются и потолочной сварки, в част­ности сварки неповоротных стыков трубчатых шин, что является большим искусством. Требуется в буквальном смысле «чувство­вать» металл и регулировать процесс сварки таким образом, чтобы сварочная ванна была минимальных размеров и отдельные капли металла затвердевали, не успев скатиться. При этом не­обходим дополнительный разогрев околошовных участков шин до красного каления посторонними источниками теплоты. Весьма

желательно также использовать полуавтоматическую импульс­ную аргонодуговую сварку.

При выборе тех или иных способов сварки шин для конкрет­ных условий полезно учитывать следующие их особенности.

Наилучшее качество соединений в отношении пластичности,, плотности и внешнего вида швов дает полуавтоматическая аргоно­дуговая сварка. Она применяется при толщине металла до 12 мм и облегчает при использовании импульсной приставки выполне­ние вертикальных, горизонтальных и потолочных швов.

Ручная аргонодуговая сварка вольфрамовым электродом также обеспечивает получение хороших соединений, но ее применение возможно только в нижнем положении.

Примерно равноценной аргонодуговой сварке по качеству швов является полуавтоматическая сварка под флюсом, которая применяется в нижнем положении при толщине шин до 14 мм. Она менее удобна в монтажных условиях вследствие несколько большей громоздкости оборудования (флюсопитатели), необходи­мости наличия на месте работ сжатого воздуха для подачи флюса, и отсутствия визуального контроля за формированием шва (шов- закрыт слоем флюса).

Автоматическая сварка под слоем флюса целесообразна только, для выполнения протяженных швов при больших объемах работ. Такие швы встречаются при заготовке тяжелой ошиновки в элек­тролизных установках. Выполнение с помощью автоматической1 сварки коротких швов, какие бывают при соединении шин встык, не оправданно, так как относительно велико время на установку автомата в начале шва и на заключительные операции.

Наибольшее распространение в электромонтажной практике получила сварка угольным электродом на постоянном токе,, допускающая соединение медных шин толщиной 30 мм и более при вполне удовлетворительном качестве швов. Независимость., от наличия аргона на месте работ делает ее наиболее доступной. Возможность пропускать через электроды большие токи, чем при сварке другими способами, и благодаря этому получать, большую погонную энергию сварки позволяет отказаться от до­полнительного подогрева шин при толщине металла до 20—25 мм. Это является большим преимуществом сварки угольным электро­дом, так как упрощает технологию и организацию сварочных работ.

Стремление вообще отказаться от дополнительного подогрева — при сварке медных шин привело к попыткам использовать для этой цели плазменную сварку, при которой достигается большая концентрация тепловой энергии.

В результате проведенных ЛенПЭО ВНИИПЭМ разработок удается применить плазменную сварку для соединения мед­ных шин толщиной пока только до 10—12 мм. К ее достоин­ствам наряду с возможностью отказаться от дополнительного подо­грева относятся также экономия присадочного материала, так

8 Р. Е. Евсеев, В. Р. Евсеев 22£>-

как сварка производится без зазора между кромками; более красивый внешний вид швов (малое усиление шва) и некоторое уменьшение времени, необходимого для сварки. К недостаткам же следует причислить необходимость водяного охлаждения горелки (плазмотрона), относительную сложность плазмотрона и большую его массу (около 2 кг). Последнее приводит к повышенной утом­ляемости сварщика при^длительной работе. Кроме того, для сварки требуются два баллона с аргоном, что усложняет и утяжеляет установку.

Оценивая указанные особенности плазменной сварки, авторы полагают, что этот способ окажется более целесообразным в элек­тромонтажной практике после разработки и освоения технологии соединения шин большой толщины. В настоящее же время он может применяться в мастерских электромонтажных заготовок и должен рассматриваться как находящийся в стадии производ­ственного опробования.

Газовая сварка медных шин является вспомогательным спо­собом вследствие меньшей производительности по сравнению с электрической и малой распространенности газосварочного оборудования в электромонтажных организациях. С помощью газовой сварки могут выполняться соединения шин толщиной до 30 мм, хотя в практике электромонтажных работ известны слу­чаи газовой сварки шин и большей толщины. Наиболее целесооб­разно использовать газовую сварку для соединения трубчатых водоохлаждаемых шин, а также для приварки к таким шинам деталей для оконцевания и штуцеров водоохлаждающей системы.

Для сварки меди ввиду ее большой теплопроводности исполь­зуется только ацетилен, так как заменители ацетилена (пропан­бутан и др.) не обеспечивают достаточно высокой мощности пла­мени.

Источник

СВАРКА ЭЛЕКТРОТЕХНИЧЕСКИХ ШИН

Особенности сварки алюминия, принципы основ­ных способов сварки, а также конструкции сварных узлов электротехнических шин были рассмотрены в главах первой и второй. Поэтому ниже приводятся преимущественно сведения по технологии сварки теми или иными способами, а также некоторые характеристики сварных соеди­нений, необходимые для оценки их качества. Выбор способа сварки в электромонтажном производстве определяется обычно наличием того или иного сварочного оборудования, возможностью получения в необходимых количествах аргона для аргонодуговой сварки, а также квалификацией исполнителей и условиями производства работ (заготовка ошиновок на производственных базах или сварочные работы непосредственно в монтаж­ной зоне, установки в помещениях или на откры­том воздухе и т. п.). При этом следует учитывать, что лучшим способом сварки алюминия вообще в сварочной технике, обеспечивающим получение плотных и наиболее прочных швов при наимень­шей их ширине, является аргонодуговая сварка. Главным преимуществом применения ее на монтаж­ных работах является, как уже отмечалось, воз­можность выполнять швы в любых пространствен­ных положениях и угловые швы, а также полное устранение опасности коррозии металла в эксплу­атации из-за остатков флюсов, которые при аргоно­дуговой сварке вообще не применяются. Однако необходимо считаться с тем, что получение аргона

Читайте также:  Японская резина 215 55 r17

в ряде случаев связано пока еще с определенными затрудне­ниями.

При выполнении швов на шинах больших сечений аргонодуго — вая сварка значительно менее производительна, чем, например, сварка угольным электродом, так как должна производиться за много проходов. Это обусловлено невозможностью подведения к электродам малого сечения, применяющимся при аргонодуговой сварке, тока достаточно большой силы, необходимого для рас­плавления металла сразу на большую глубину. Так, например, при полуавтоматической аргонодуговой сварке плавящимся элек­тродом (алюминиевая проволока диаметром 2 мм) максимальный сварочный ток составляет 500 А и сварка шины толщиной 30 мм в нижнем положении выполняется за 15 проходов. В то же время при сварке угольным электродом используются токи до 2000 А, что дает возможность сваривать шины толщиной до 70 мм всего за четыре прохода.

Наряду с возможностью использования дуги значительной мощности сварка угольным электродом отличается большой про­изводительностью, относительной простотой применяемого обо­рудования и поэтому получила наибольшее распространение в электромонтажной практике.

К недостаткам сварки угольным электродом следует отнести невозможность выполнения потолочных и горизонтальных швов и трудности с выполнением вертикальных швов (практически вертикальные швы выполняются только при сварке шин больших сечений в специальных приспособлениях). Кроме того, не удален­ные после сварки остатки флюса могут вызвать коррозию алюми­ния, что затрудняет применение этого вида сварки на открытом воздухе и в сырых помещениях.

Ручная сварка металлическими (алюминиевыми) электродами со специальными обмазками обладает некоторыми преимуществами по сравнению со сваркой угольным электродом. Достигается более высокая прочность соединений за счет сокращения зоны термиче­ского влияния и уменьшения объемов наплавленного металла. При сварке внутренних угловых швов этим способом получаются более качественные соединения, так как можно проникнуть элек­тродом в глубину угла между свариваемыми деталями и вести сварку короткой дугой. В случае сварки таких угловых швов угольным электродом неизбежны подплавления поверхностей, образующих угол, из-за большого объема факела дуги.

В результате большей концентрации теплоты при сварке металлическими электродами кромки расплавляются на меньшем расстоянии от торцов свариваемых шин, что способствует быстрому формированию сварного шва (меньше растекание металла, чем при сварке угольным электродом). Это облегчает сварку изделий сложного профиля, например трубчатых или коробчатых шин.

Следует отметить, что при сварке металлическими электро­дами происходит более сильное разбрызгивание металла, чем при

сварке другими способами. Отдельные капли металла, покрытые обмазкой (флюсом) или шлаком, пристают к поверхности шин, что затрудняет зачистку швов и околошовных участков после сварки. Это является недостатком рассматриваемого способа.

Электрошлаковую сварку целесообразно применять только для прямоугольных шин большой (60 мм) и сверхбольшой (120— 200 мм) толщины. Для этих случаев она является наиболее ра­циональным и производительным способом. Возможна сварка не только шин, но и шин с пакетами лент (весьма распространенный случай при монтаже ошиновки электролизеров алюминия). Сварка производится в положении шин «на ребро» с принудительным формированием шва. Требование тщательного уплотнения шва для устранения протекания расплавленного шлака и алюминия из образовавшейся ванны осложняет использование этого способа и пока еще ограничивает его применение только сваркой встык. В связи с этим, а также необходимостью использования громозд­кого и тяжелого оборудования электрошлаковую сварку можно применять только в условиях производственных баз монтажных организаций и заводов, изготовляющих тяжелую ошиновку. Необходимо всемерно стремиться к ее внедрению, так как она значительно облегчает труд сварщиков.

Газовая сварка для соединения алюминиевых шин не может конкурировать с электрической сваркой ни по производитель­ности, ни по качеству получаемых соединений. Пламя газосва­рочных горелок не удается сконцентрировать на узких участках, поэтому швы получаются широкими, с большими зонами терми­ческого влияния. Возможна сварка только плоских шин в ниж­нем положении (встык и по боковым кромкам). Поэтому газовой сварке может быть отведена в электромонтажном производстве роль резервного способа, используемого при невозможности применения электросварки или при небольших объемах работ.

Холодная сварка является оригинальным способом соединения алюминиевых шин. Основные ее преимущества; простота техно­логии, благодаря чему от исполнителей не требуется квалификации сварщиков цветных металлов; легкость оборудования и оснастки и независимость от источников электроэнергии (при использова­нии ручных механизмов, не имеющих электропривода) или нали­чия сжатых газов, необходимых для электро — или газовой сварки. Возможно выполнение соединений и ответвлений плоских шин толщиной до 10 мм. Соединения шин, выполненные холодной сваркой, обладают высокой прочностью.

Читайте также:  Резина для ремонтных работ

Производительность холодной сварки ниже, чем электрической. Однако, если учесть необходимость доставки и подключения гро­моздкого электросварочного оборудования, общее время, затра­чиваемое на выполнение работ (особенно при малых объемах работ), будет соизмеримо.

Применение холодной сварки особенно целесообразно при производстве»!МеЙ¥рдмонтажіьіх работ на небольших, разбро­санных объектах (например, городские распределительные пункты и трансформаторные подстанции). При заготовке ошиновок иа производственных базах монтажных организаций она является высокопроизводительным процессом, так как в этом случае за один ход пресса могут выполняться сразу многоточечные соеди­нения.

Источник

Подготовка контактных соединений и сварка

Контактным соединением называют место соприкосновения двух шин. Соединения бывают разъемные, выполняемые сквозными болтами или сжимами, и неразъемные сварные. Контактные поверхности для болтовых соединений обрабатывают для того, чтобы они были плоскими и ровными.

Подготовка шин для болтового контактного соединения состоит из следующих операций: разметки отверстий, их сверления, обработки контактных поверхностей и др.

Отверстия размечают по эскизу, на котором обязательно должны быть указаны расстояния до мест крепления, изгибов и соединений с точностью до ±1 мм. При разметке применяют шаблоны с просверленными для болтов отверстиями, по центру которых проходит керн. Шаблоны позволяют накернить отверстия без разметки их осей. Отверстия можно сверлить по кернению или с помощью кондуктора. Однако лучший способ выполнения отверстий — просечка их штампом на прессе, для чего необходима лишь разметка места соединения. Проштампованные отверстия не требуют последующей обработки, их края получаются чистыми без заусенцев. Диаметр отверстий должен быть немного больше диаметра болтов (для болтов 0 6—8, 9—12 или 13—18 мм отверстия делают диаметром соответственно на 1, 1,5 или 2 мм больше). В пакете шин отверстия сверлят одновременно, для чего весь пакет собирают и жестко зажимают в кондукторе.

При обработке контактной поверхности полностью удаляют с алюминиевых шин оксидную пленку, с медных шин — оксид меди, а со стальных шин — ржавчину. Обработку выполняют вращающимися стальными щетками или диском с кардолентой. При незначительном объеме ошиновки допускается обрабатывать контактные поверхности вручную драчевым напильником и щеткой с кардолентой. Металлическую пыль удаляют чистой тряпкой, и поверхность покрывают тонким слоем технического вазелина.

Окончательную обработку алюминиевых шин производят наждачной или стеклянной бумагой № 1, 2 и 3 под слоем вазелина. После зачистки загрязненный вазелин удаляют тряпкой и заменяют чистым. Шлифовку и полировку контактной поверхности не делают, так как это ухудшает контакт.

Болтовые соединения шин выполняют непосредственно внахлестку, внахлестку с высадкой «утки», встык с помощью накладок, внахлестку с помощью сжимов (рис. 2, а—г).

Рис. 2. Болтовые контакты соединения шин:
а — внахлестку, б — внахлестку с высадкой «утки», в — встык с помощью накладок, г — внахлестку с помощью сжимов

Все крепежные изделия для разборных контактных соединений (болты, гайки, шайбы) должны иметь защитные металлические покрытия, но в сухих помещениях при соединении шин из однородных металлов допускается применять вороненые стальные болты, гайки и шайбы. На болтовых контактных соединениях не требуется устанавливать контргайки, за исключением электроустановок, подверженных вибрации, и во взрывоопасных зонах. Для застопоривания болтовых соединений шин (медных, стальных и из алюминиевых сплавов) служат стальные пружинные (разрезные) шайбы. При соединениях алюминиевых шин пружинные шайбы не применяют, а под головку болта или гайку со стороны шины устанавливают увеличенные шайбы. Если в контактном соединении использованы тарельчатые пружины (шайбы), не надо ставить контргайки или пружинные шайбы.

Гайки на контактных соединениях располагаются так, чтобы при эксплуатации был удобен их осмотр из коридора обслуживания. Затяжку гаек лучше всего выполнять специальным гаечным ключом с ограничением крутящего момента, а при его отсутствии — обычным гаечным ключом, при этом запрещается удлинять его рычаг для повышения усилия затяжки. Правильная затяжка гаек определяет качество контакта и надежность его работы. Плотность контакта после затяжки проверяют щупом (толщиной 0,02 мм), который по периметру соединения не должен заходить более чем на 5—6 мм. Заготовленные шины рекомендуется маркировать условным обозначением мест их установки. Болтовые соединения шин в эксплуатации требуют регулярного контроля за состоянием контактов, проверки их температуры, периодического подтягивания болтов, а временами и зачистки контактных поверхностей. Поэтому вместо болтовых применяют сварные соединения, в особенности для алюминиевых шин. Эти шины в местах соединений подвержены окислению и холодной текучести металла под действием давления болтов. При таких свойствах алюминия необходимы специальные шайбы увеличенного размера, которые подкладывают под головки болтов и гайки, и более частые ревизии алюминиевых шин, чем медных или стальных.

Сварка шин.

Сварка обеспечивает более надежные по сравнению с болтовыми контактные соединения шин и, следовательно, повышает надежность ошиновки в целом. Сварные соединения по сравнению с болтовыми менее трудоемки и более экономичны, поскольку требуется меньше шин из-за выполнения встык. Поэтому сварку шин следует применять во всех случаях, за исключением тех, когда по условиям эксплуатации необходимо иметь разъемные соединения.

Сварка алюминиевых шин имеет некоторые особенности. Алюминий при нагреве не меняет цвета, поэтому трудно контролировать ход его расплавления. Кроме того, при нагреве не наблюдается постепенного размягчения алюминия, а при 659° С он сразу расплавляется. Учитывая эту особенность алюминия, а также способность растекаться при сварке и хрупкость при высоких температурах, приводящую к провалам нагретого металла, сварку ведут преимущественно так, чтобы шов занимал нижнее горизонтальное положение. Главным же затруднением является способность алюминия быстро покрываться на воздухе оксидной пленкой. Температура плавления оксида алюминия около 2100° С, поэтому пленка вследствие тугоплавкости препятствует слиянию капель металла свариваемых частей их соединению. Кроме того, оксидная пленка, остающаяся в шве, снижает его механическую прочность и проводимость.

Читайте также:  Если на резине появились трещины что делать

Для удаления оксидной пленки с поверхности изделий применяют специальные порошки — флюсы, которые защищают также жидкую ванну от окисления в процессе сварки. Расплавленные флюсы растворяют оксидную пленку и превращают ее в легкоплавкий шлак, всплывающий на поверхность сварочной ванны. Шлак в процессе сварки защищает поверхность расплавленного металла от дальнейшего окисления. В электромонтажной практике при электродуговой сварке алюминиевых шин используют флюс ВАМИ.

Наиболее распространенные виды сварки — это ручная дуговая угольным электродом и ручная аргонно-дуговая неплавящимся вольфрамовым электродом. Дуговая свар- ка шин осуществляется на постоянном и переменном токе. Источниками тока являются сварочные преобразователи и трансформаторы, а также сварочные полупроводниковые выпрямители, предназначенные для выпрямления переменного тока в постоянный сварочный ток без вращающихся преобразователей.

Сварные швы различают по форме сечения и расположению в пространстве, поэтому и сварка бывает нижняя горизонтальная, вертикальная и потолочная.
При нижней сварке дуга находится над свариваемыми деталями (способ считается наиболее доступным и производительным).

Вертикальная и потолочная сварка требует больших навыков от сварщика и применяется редко. В качестве источника питания используют сварочные агрегаты ПС-300, ПСО-300, ВД301 на номинальный сварочный ток до 300 А, а также ПС-500, ПСО-600 и ПСУ-500 на номинальный сварочный ток до 500 А и др.

В комплект инструментов и принадлежностей сварщика шин входят электрододержатель, проволочная щетка, зубило, молоток, сосуд для флюса и кисточка для его нанесения, маска для защиты глаз и лица от лучей сварочной дуги и брызг металла.

В мастерских шины сваривают на специальных сварочных столах, а непосредственно на объекте — с помощью переносных приспособлений. Сварку шин выполняют в такой последовательности: очищают кромки шин проволочными щетками; устанавливают приспособления на шины, выверяют их и закрепляют в нужном положении; наносят флюс на кромки свариваемых шин; производят сварку; снимают приспособление, очищают шов от флюса, шлака, приливов и окрашивают его.

Шины толщиной до 12 мм сваривают за один проход дуги. Дугу направляют на кромки шин в начале шва, в зазор между шинами. Расплавив кромки шин, опускают в сварной шов присадочный пруток, обмазанный флюсом, и расплавляют его дугой. Расплавленный металл перемешивают в сварочной ванне концом присадочного прутка, что обеспечивает уплотнение металла и удаление из него шлаков. В конце шва дугу разрывают. Для получения высокого качества соединения во время сварки и в период охлаждения шва запрещается двигать шины во избежание появления трещин. Ответвительные шины приваривают к кромкам сборных шин с помощью специального приспособления.

При сварке полностью удаляют проволочной щеткой остатки флюса и шлака со сваренного стыка, поскольку эти остатки при наличии влаги с течением времени вызовут коррозию алюминия, что приведет к разрушению соединения. Для предохранения от коррозии сварные швы покрывают глифталевым лаком или краской, которой окрашивают шины.

Чтобы обеспечить хорошее качество сварных швов, строго соблюдают технологию сварки. Чаще всего встречаются такие дефекты сварных швов, как непровары, трещины, наплывы, пережоги металла, раковины. Каждый сваренный стык шин надо осмотреть и все обнаруженные дефекты устранить. Наиболее эффективно соединять алюминий и его сплавы аргонно-дуговой сваркой неплавящимся (вольфрамовым) электродом. Этот способ сварки вытесняет другие способы, требующие использования флюсов.

Ручную аргонно-дуговую сварку вольфрамовым электродом выполняют на установках Удар-300, Удар-500, УДГ-301, УДГ-501 и др. Для аргонно-дуговой сварки алюминия и его сплавов неплавящимся электродом применяют портативные аппараты «Разряд 160» в комплекте со стабилизатором дуги СД-3 как в мастерских, так и на монтаже, в том числе при сварке шин небольших сечений из сплава ЛД31Т1. Для полуавтоматической аргонно-дуговой сварки служат полуавтоматы, например ранцевые монтажные ПРМ — самые удобные в монтажных условиях.

Применяют разные виды сварки: ручную аргонно-дуговую вольфрамовым электродом — для соединения шин из алюминия и его сплавов толщиной до 6 мм (алюминиевый сплав АД-31Т1 следует соединять только аргонно-дуговой сваркой); ручную дуговую угольным электродом — для соединения шин из алюминия толщиной 30 мм и более при нижнем положении шва.

Сварка алюминиевых шин в любых пространственных положениях в среде защитных газов является наиболее прогрессивным способом, поскольку не надо использовать флюс, очищать швы от его остатков и шлаковой корки. В среде защитных газов производят ручную дуговую сварку неплавящимся (вольфрамовым) электродом с введением в шов присадки, а также автоматическую и полуавтоматическую сварку плавящимся электродом. Для сварки в среде защитных газов применяют аргон марок А, Б, и В, который обеспечивает разрушение оксидной пленки.

Источник

Поделиться с друзьями
Шинбург
Adblock
detector